Preischemic hyperglycemia leads to delayed postischemic hyperthermia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Temperature alterations are known to influence the outcome of transient ischemia, even when instituted in the postischemic period. Since preischemic hyperglycemia aggravates ischemic brain damage, the question of whether hyperglycemic animals become hyperthermic arose. To explore this possibility, we measured body temperature telemetrically in normoglycemic and hyperglycemic rats subjected to 10 minutes of forebrain ischemia at a body (and brain) temperature of 37 degrees C. METHODS Isoflurane-anesthetized animals were subjected to 10 minutes of forebrain ischemia under normoglycemic or hyperglycemic conditions. Temperature changes after ischemia were measured by means of a telemetric temperature coil. RESULTS In normoglycemic animals, temperature decreased to 35.6 +/- 1.1 degrees C (mean +/- SD) during the first 4 hours of recovery, after which it gradually increased to normal values (38 degrees C). Hyperglycemic animals behaved differently in that they remained normothermic for approximately 10 hours during recovery and later became hyperthermic, with core temperatures rising above 39 degrees C. The rise in temperature was not due to the osmotic load of the glucose administered because infusion of mannitol, which gave a comparable increase in plasma osmolality, failed to cause delayed postischemic hyperthermia. Excessive hypercapnia during ischemia in normoglycemic animals, which produces cerebral acidosis of a magnitude similar to that of hyperglycemia and is known to aggravate ischemic lesions, likewise failed to induce hyperthermia. When post-ischemic seizures ensued in hyperglycemic subjects, temperature was 39.8 +/- 0.6 degrees C. Animals with seizures invariably died. To evaluate the influence of postischemic hyperthermia on the outcome, an additional series of experiments was performed in which delayed hyperthermia was avoided by gentle cooling (n = 6) or by acetaminophen administration (n = 5). Although these procedures prevented delayed hyperthermia, they neither blocked seizure induction nor affected the fatal outcome. Postischemic seizures developed when the core temperatures of animals were 37.9 +/- 0.1 degrees C and 37.8 +/- 0.2 degrees C in the cooled and acetaminophen-treated groups, respectively. CONCLUSIONS The results suggest that both delayed hyperthermia and delayed seizures in hyperglycemic animals are caused by the aggravated damage incurred by these animals during or immediately after the ischemic insult.
منابع مشابه
Bench-to-bedside review: A possible resolution of the glucose paradox of cerebral ischemia
The glucose paradox of cerebral ischemia (namely, the aggravation of delayed ischemic neuronal damage by preischemic hyperglycemia) has been promoted as proof that lactic acidosis is a detrimental factor in this brain disorder. Recent studies, both in vitro and in vivo, have demonstrated lactate as an excellent aerobic energy substrate in the brain, and possibly a crucial one immediately postis...
متن کاملInsulin-induced normoglycemia improves ischemic outcome in hyperglycemic rats.
BACKGROUND AND PURPOSE Hyperglycemia is known to aggravate ischemic brain damage. This study sought to determine if preischemic insulin-induced normoglycemia would improve outcome in hyperglycemic rats. METHODS Normal rats and rats with 5-7 days of streptozotocin-induced diabetes were studied. Normal rats served as either fasted normoglycemic controls or dextrose-infused (hyperglycemic) contr...
متن کاملIschemia in normo- and hyperglycemic rats: effects on brain water and electrolytes.
Previous investigations have shown that preischemic hyperglycemia worsens cerebral outcome. This study sought to delineate the temporal relations between postischemic brain edema and the development of spontaneous epileptic activity. Fasted rats were subjected to 10 minutes of forebrain ischemia. One-half of the animals were made hyperglycemic by glucose infusion prior to ischemia. At serial re...
متن کاملPostischemic Na(+)-K(+)-ATPase reactivation is delayed in the absence of glycolytic ATP in isolated rat hearts.
Normalization of intracellular sodium (Na) after postischemic reperfusion depends on reactivation of the sarcolemmal Na(+)-K(+)-ATPase. To evaluate the requirement of glycolytic ATP for Na(+)-K(+)-ATPase function during postischemic reperfusion, 5-s time-resolution 23Na NMR was performed in isolated perfused rat hearts. During 20 min of ischemia, Na increased approximately twofold. In glucose-r...
متن کاملEffect of mild hyperthermia on recovery of metabolic function after global cerebral ischemia in cats.
We investigated the effect of mild whole-body hyperthermia before and after 16 minutes of global cerebral ischemia on metabolic recovery during recirculation in cats using in vivo phosphorus-31 nuclear magnetic resonance spectroscopy. Hyperthermia (temperature 40.6 +/- 0.2 degrees C) was induced greater than or equal to 1 hour before ischemia and was maintained during 1.5-2 hours of recirculati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 25 9 شماره
صفحات -
تاریخ انتشار 1994